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A PROBABILISTIC THEORY OF UTILITY®
R. Dunean Luce

1. Introduction
The mathematical formulation of individual decision making «

utility theory - has been traditionally based upon none-probabilistie
preference relations, usually postulated to be weak orders. Few
authors have been satisfied with the assumption that preference is

"transitive, which is easily demonmstrated to be at variance with

fact, Yet this assumption has been retained as an approximation

to reality because of its nice mathematical properties; for example,
only such a preference relation can be represented by a singlie order
preserving mmerical. function, Nonetheless, a number of people have
voiced a desire for a probabilistic theory, mainly, I would judge,
so a:b'\;‘e::‘e; to handle empirical data. Here iz an attempt at such
a theory. One pleasing aspect of this theory is that it seems to
have conceptual import as well as giving the o .iiyicist a more
manageable tool.

. The intuitive idea behind the mathematical framework I
shall present is this: Pairs of elements (or ziternatives or
stimli) are selected from & given set S, and a person is required
to choose from each pair the alternative whieh he views as “superior®
according to some given comparative dimension -~ a dimension whose
choice depends upon the particular empirical context. It may be

preference; intensity. size, loudness, importance, etc. It will be

1'l'his paper completely supercedes "Twd resulis on semi-ordered
nixture spaces,* Technical Report no. 13, Behavioral Models Project,
Bureau of Applied Social Research, Columbia University.
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convenient to think of the underlying comparative dimenaion as
"strict preference," but it must be kept in mind that this is only
one of the many possible interpretations which can be given to the
formalism,

If a and b are elements of S, it is postulated that there
exists a probability P(a.b) that a is judged as strictly preferred
to b, One problem to be faced is the axiomatic formulation of
the fact that mary dim.nsions seem to impose something like a
linear ordering upon the underlying set S Once this is done, S is
specializad to be a set of risky alternatives -f the form a<b, where
this symbol is interpreted to mean that alteri:.ive a arises with
probability .. and alternative b with probabilii; le«, The exact
meaning that should be given to the word "prob: »ility* will receivs
some attention, At this point. my central assy.ption will be
introduced; namely, that the activity of deecid’ -3 which of two
alternatives is pr>ferred is statistically ins- mdent of the
activity of diserininating whiech of two probabi.ities is larger,
Indeed. this entire paper can be described as exploring the con
sequences of this one assumption.

It may intrigwe the reader to know in advamce some of the

interpretive conclusions we shall reach.

i, If the independence assumption ie met; then the
probabilities entering into the risky alternatives must be sub-
Joctive probabilities, where subjective probability is given a well
defined and operational meaning which is identical to a traditiomal

usage of "subjective" in psychophysiss.

f.
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i1, If the independence assumption is met, then the
mathematical form of the diserimination function for suwjective

probabilities is completely determined up to a single perameter,

114, If the independence assumption is met and if a certain
natural weak order induced by the probabilities P can be represented
by a linear utility function, then that function is a subjective
sensation scale in the sense used in psychologys and; under alightly
stronger assumptions, the converse is trues a sensation scale is a
linear utility function,

iv. Suppose the basic alternatives in a gituation are sums of

money and that there are at least three differ:nt sums such that for

any pair of these sums a particular parson wili invariably prefer the

larger, everything alse being held equal, If his discrimination of
subjective prcbabilities is not perfect and if the independence
assumption is met for gambles of moneoy, then t: :re cannot exist a
utility funetion for these sums of money such: (u2t the utility of a
gamble is equal to the expected utility of its components, Put
another way, if his preferences among these monoy gambles can be
represented by a linear utility fumetion, then Lis preference dis-
erimination cannot be independent of his swjective probability
discrimination ; unless the latter is perfect.

Background references for this paper are Edwards [ 1 ],
Luce [ 4 ], Luce and Edwards [ 5 ], and von Neumann and
Morgenstern [ 6 ].
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2. Disorimination and Linear Structures

Definition 1o Given a set S, a realwvalued function P with domain
SxS hcmsdadiswimmnsmcbm on S provided that:
11 18 P(a.,b) 2 0, for a:l.l a,beS,

D2, P(a,b) + P(b,a) <1, for all a,bcs,
and D3, there exist a#,bw#eS such that P(as,bi) # P(b*,a*)o
A discrimination structure is called reflexive if

Dho P(a,a) s 0, for all &S,

Since P(a,b) is interpreted as the probability that a is

strictly preferred to b, 1-P(a,b }-P(b,a) is interpreted as the
probability that a is judged "indifferent® to h,

Definition 2. If P is a discrimination struct'we on S, the bimary

relationz on S is defined ast az b if P(a,0) > P(b,e) and P(c,b) 2

P(c,a) for all csS. If a2 b and b > a, then av'b is written. If
a2 b and not avbh, then a > b is written,
Thoorem 1. gPhadiscﬁ.ndhation mtmvogsg then > is a

aua.sL ordering of S.

Proof, Obvious,

Definition 3. A discrimination structure P on S is called transitive

if a>b implies P(b,a) = 0.

If the preferences registered by people are assumed to be
governed by a discrimination structure, then in genersl a sample of
preferences will include intransitivities. ‘

Pny xeflexive digeximenabim steuctove s '\*0'\{3;'&»2“

'§ ovh, Hhen 0= P(e0) 2 P(b ) 30.

.
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There is nothing in the definition of a discrimination

structure which attempts to capture, even in probabilistic tarma s
the idea that a preference dimension imposes a linear, or weak,
ordering on §o The appropriate restriction is suggested by
definition 2; but it can also be arrived at by intuitive considera-
tions such as these: Suppose that it is possible to string the
elements of S out as a linear array in such a manmner that, for each
asS, P(x,a) is an increasing function of x and P(a,x) is a decreasing
function of x, then we may think of this array as reflecting ine-

creasing preference; Thus,we are led to:

Definition L. A discrimination structure P on S is called a linear
structure provided that for every a,bsS either

- P(g,o) > P(b,e) and P(c',b) > Pl c_,&), for all ceS,
or i1, Pla,e) < P(bye) and P(e,b) < P(c,a), for all ceS.

Theorem 2. If P is a linear structure on S; lien > is & weak

ordering of S.
Proof, Obvious,

If a linear structure is reflexive, and so transitive, then no
, intransitivities, but in general this is not so,
sarple of reported preferences will include strict preferencs / I
propose that decision theories postulate the existence of limsar
structma,_ not week orders, as the basic preference information.
Empirically, observations on subjects would be used, not to construct
woak orders directly, but to estimate the underlying linear strueture.
Onoe that is recovered, dﬁﬁniti,on 2 generates a weak order suitabls

for use in the present methematical theories, In much of the
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following work certain assumptions about linsar structures will be
made and their consequences for the induced weak orders explored.
For the most part we shall be concerned with underlying spaces con-
sisting of risky alternatives and with weak orders that can dbe
represented by linear utility functions. It will be shown,among
other things, that certain plausible conditione on a linear
structure imply that its weak order can be represented by a linear
utility function and that the entire linsar structure can be
represented by the utility function plus one other real-valued
function of a real variable,

It should be pointed out that the present comcepts provide
not only a framework for a probabilistic theory of utility, dbut also
include as special cases all the mathematical models of discriminae
tion studied in paycaophysics. In that work, S is taken to be the
positive real mmbersz, While I have no intenticn of examining the
psychophysical modcl here, I shall note from tir» to time close
conceptual relations between it and this utility model. Much of this
work was suggested by a knowledge of both the classical discrinina-
tionmdolan@thevonﬂmutmtythom{é ], and, whether we
like it or not, some of the consequences of a probabilistic utility
theory are psychophysical in naf;\n'eo The reader interested in the
formal mathematical structure of the psychophysical model can con=
st [S ]

One thing that is clear is that few results oan be obtained
about anything so genersl as a discrimination structure, that to find
any non-trivial consequences it is necessary to postulate an underlying

e

.o T = T
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set S which is dense and which has considereble mathematical structure, o
For example, in psychology S is taken to be the positive real numberss
here it will be taken to be a samswhat weakensd form of the notion
of a mixture space. It is plausible that a great many results,
possibly including both mine and those of paychophysics, can be
obuindbychomingstobemwtetopologicnlpm,butao
far no work in this direction has been undertaken,

e
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3. tions of Linesr Strustures by Semiorders | D

Before specialising S to a space of risky alternatives, the
uhﬁmmmlmu's&whmesandapmhalpmmld
discrimination [ L ] will be examined. An algebraic representation
of any discrimination siructure can be obtained via the following o
standard pasychophysical device:

e Y

Definition 5. mrboad:smmnationamtmonsmletku '
amﬁor,%sk<1,thmthoptirotbimyro.';ﬁon(lk,lk)ons '
is defined by: |

alLb if P(a,b) >k

aLb if P(a,b) <k and P(b,a) < ke 2

Tt will be recalled that in [ L ] the following conoept was
introduceds

Defimition 6. A pair of binary relations (L,I) on a set S is called
& semiorder if for every a,b,c,ds8 thp following anop are mets
Sl. exactly one of alb, bla, or alb obtains,
82. ala, i
83. alb, bls, eld imply ald,
S4. alb,ble,bld imply not both ald and dle,
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¢ Theorem 3, The relations (L ,T,) of a linear strusture forma

semiorder.
Proof, Sl. Axiom D2 of Definition 1 and k > 1/2,
82, By axiom D2, P(a,a) < 1/2 <k, s0 al,»,
83. Suppoao. a.Lkb_, bIko, clkd_. We show a 3 c. Suppose ¢ > a,
then by definition 2, P(c,b) > P(a,b), but by definition S, k > P(e,b)
and P(a,b) > k, which is impossible, Thus, by theorem 2, a3 ¢o
Then by definition 2, P(a,d) > P(c,d) > k, 80 alydo ]
Sh. Suppose alb, bL 6, bL d. Since P(a,b) > k > P(bsb),
definitions 2 and ) imply a > b, In like manner, b > ¢, As above,
¢ ons shows that either a > dxb o bxdxzc. If the former,
| P(d,e) > P(b,e) > k; 80 not dlco If the latter, not al d.

We cbserve that if a linear structure iz both reflexive and !
Wsitin,thenthemngsofkwpegxtendod?o O0<k<l, |
| Given a pair of relations (L,I), another pair of relations
) (>1,1) can be defineds
‘ &> if either i, alb,
1i; alb and there exists ¢ such that alc and clbd,
i1, aldb and there exist= d such that alc and olb,

—_—
B e

a'b 4if neither & >'b nor b >fa,
In [ 4 ] it wes shown that if (L,I) is a semiorder, then (>!,7!) is a
weak order, which we speak of as the weak order induced by the semiorder.

Theoren L. _I_{P:lzalimarsmt\mons,kam_,mgk<l,
2, ¥he weak order induced by P according to definition 2, and 2 the
the weak arder induced by the semiorder (I,,I, ), then >, implies > .

P

~
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Froof. If a > b? then d.thar .

i akb, 8o P(a,b) > k > P(a,2), so by definitions 2 and L, & > b3
or ii. aLb, aLc, and el b, so P(esb) > k > P(cya), 80 a > by
or i, aLb, al,d, and AL b, s0 P(a,d) > x > P(b,d), so 2 > b,

L. Decompossble Discrimination Structures on Weak Mixture Spaces

Much of modern utility theory treats an wnderlying space of
risky alternatives a.b, whu'o this symbol is usually interpreted to
mean that one, but not both, of the alternatives a or b results, the
former with probability .( and the latter with probability let(. Just
what interpretation should be given to the word "probability® is a
point of dispute; we will be led to a particular subjective probability
concept in sestion 7. However, at present the conoept of probability
need not be brought in at all, but rather £ can be taken to dencte
the occurrence of a well specified event, such as whether a given die
thrmbyaputicﬂumatamﬁnedtha_cmwm,w
whether the word "Britain® will be found in coluvrm S5, page 2 of
tomorrow's New York Times, If « denotes the occurrence of a particular
event, let < dencte its nonwocourrence, In these terms, ah will be
interpreted to mean that a results if event « ccours and b if it does
not. The set of events which will be admitted experimentally will
have to satisfy certain special properties in the 1light of the
definitions we shall introduce, namely: basic events shall be
independent of ons another and there is at lsast one ewent, o, which
bas (subjective) probebility 0. The axicms given below, and in
later sections, are closely related to those given by Hausner [ 3 ] for
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what he called a mixture space; however, even when we introduce
numbers we shall not need all of his axioms.

* Definition 7. Let E be a Boolean algebra with null element o,

A set S is called a weak mixture space over E if for all a,beS and «sE,
Rl, axbeS,
R2, asa = a,
R3. asb = baa
Ri. aod = b,

The next concept, which has no analogue in non-probabilistic
utility theory, is orucial throughout the rest of this paper. Cone-
sider the two alternatives a«b and afb. It is plausible that the
former will be preferred to that latter if and only if either

i. alternative a is preferred to b and event « is perceived

as more probable than event B,
or 11, alternative b is preferred to a and jvent § is perceived
as more probable than event «.
If we assume that there is a probability Q(«,p) that « is discriminated
as more probable than f and if we assume that the perception of

" prefersnce is statistically independent of the discrimination of

relative probability magnitudes, then there is (see Definition 8) a
simple expression for the probability that asb is preferred to afbd.

'Itnmmtmummmmnmmmmtm

processes may not be statistically independent, at least when £ and
p are identified with their objective probabilities; however, this

is far from certain at present, In any event, it is interesting to




examine the consequences of this assumption -~ eapecially since sowe
of them are intimately related to the notion of a linear utility
function,

Definition 8, A discrimination structure P on a weak mixture space S
is said to be decomposable if there exists a real valued function Q'
on ExE, which is called the core of P, such that for all «,Be¢E,

1. Q(«,B) >0,

11, Q(u,p) + Qp,4) <1,
and 114, for all a,beS;

P(ab,agb) = P(a,b)A(«,8) + P(bya)Q(Bsx)e
It is simple to give an expression for Q in terms of P, namely:

P(ab,agb )P(a,b) ~ P(aBb,ab)P(b.a)
P(a,bsf- P(b,a) ’

Qtsp) =

for any a,beS such that P(a,b) ¥ P(b,a) (by cefinition 1, there is at
least one such peir). This formula renders it possible to estimate Q
from empirical preforence data, if the assumpiion is correct, and to
determine whether it is correct by holding « zad B fixed while varying
a and b, |

At this point I could offer an exampls of a decomposable
discrimination structure, but since later results will make con~
structing examples completely trivial, there i3 1little point in taking
the space here,

The semiorder representation of linesr structures (see the
previous section) is inadequate for the study of decompossble linear
structures for the following reasont If a probability cutoff k is
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chosen and it is applied to both P and Q, then either &Ikp or ﬂ:kb
imply (ad )Ik(upb )y for in the former case
P(asb,apb) » P(a,b)Q(«,8) + P(bya)A(p,«)
< k[P(a,b) + P(b,a)]
2k

and similarly P(afb,asb) < k. In the latter case a similar proof

holds, However, the converse need not be true. Consider, for example,

a case where k = 5/8, P(a,b) = 3/4, P(b,a) = 1/k, Q(«,p) = 3/L,
and Q(B,«) = 1/k, then it follows that P(axb,apb) = 5/8

and P(apb,ad) = 3/8, so (a4b)I,(agb) even though neither aLb nor «I.f.

Definition 9. Let E be a Boolean algebra, A reale-valued function f on

ExE is called symmetric if £(«,8) = £(F,%).

Definition 10, A diserimination structure P on S is called additive
if there exists a constant K, 0 < K < 1, such that for all a,bes,
P(a,b) + P(b,a) = X,

Theorem E. The core of a decomposable discrimination structure on a
weak mixture space is itself a discrimination structure, it is

symmetric, and it is either reflexive or addiiive with K =1,
Proof, Let P be the decomposable discrimination structure and Q its

core. To show Q is a disorimination structure it is sufficient to
show Q(e,0) ¥ Q(o,e), where we call o = o,
Suppose not, then for any a,bsS, axioms R3 and Rl imply
P(a,b) = P(asb,aodb)
» P(a,b)Q(e,0) + P(b,a)Q(0,e)
= [P(a,b) + P(b,a)]Q(e,0).
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By axiom D3 of definition 1, there exist a#,b#eS such that
P(a%,bi) ¥ P(bi#,a), but from what has just been shown,
P(a#,b#) = [P(a#,bi#) + P(b¥,a#)]Q(e,0)
= [P(bk,a#) + P(a,b#))Q(e,0)
= P(b¥,a#),
which is a contradiction, _
To sho::a.}is gymmetric, lat a# and b¥* be the elements
described in axiom D3 (definition 1); then by axiom R3 (definition 7)
P(astbit,a#pbs) = P(bidan,bifas),
for all <,BeE. Apply the decomposition asswption to both sides,
P(a#,b#*)Q(«,8 ) + P(b#,a%)Q(B,«)
= P(bw,a#)Q(L,F) + P(as,b% )Q(F,4).
Collecting terms, |
P(ax,b* )[Q(F,%) = Q(«,p)] + P(bw,a%)[Q(Z,F) = Q(Bsx)] = 0
Interchange the rolies of a* and bi,
P(b%,a*)[Q(F-7) « Q«,8)] + P(am,b#)[QCLF) = Q(By)] = 0
This pair of equations has no non-trivial solution since the
determinant of coefficients, P(a#b®)? - P(bw,ax)?, is non-sero by the
choice of a#* and b, so Q is symmetric.
Using axiom R2, and the decomposition assumption, then for
any asS and any « &E,
P(a,a) = P(axa,apa) = P(a,a)[Qx,p) + Q(B,«)]
If P(a,a) > O for any a, then Q(«,p) + Q(Bs«) = 1, s0 Q 1s additive
with X = 1, If P is reflexive, then by axioms D1 and D3, there exist
a#, b#eS such that P(a%,b#) + P(b*,a#) > 0,

” P(andt,ands) = 0 = P(a%,b% )ls) + P, 8% R(<,<)

implies Q(«,%) = 0, 1,00, Q is reflexive,

B o
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Definition 11. A discrimination structure P on a weak mixture space
is called regular if for all a,bsS and «eE, P(a,ab) = P(bua,b).

The importance of the concept of regularity will not become
apparent until section 6.

Theorem 6, A decomposable discrimination structure P on a weak
mixture space is regular and elther it is reflexive and transitive or

it is additive. It is reflexive if and only if its core is reflexive.

It is additive if and only if its core is additive,

Proof. Using axiom R} and the decomposability assumption,
P(a;axb) = P(aeb,axb) = P(a,bR{e,«) » P(b,a R(«,e)
P(bua,b) = P(bxa,bea) = P(b,a)Q(«se) + P(ab)Q(e,),
and so P is regular,

By the Fenkrk Tolioving SeTLAItIon 3y 5 36 treseivirer
and only if P is reflexive. /If P is not reflexive, choose a' such
that P(a‘;a') > 0, and let K = 2P(at,at), then for any bsS,

K = 2P(a',a') = 2P(atab,a’eb)
= NQ(e,8)[P(a’,b) + P(bya’)]
= P(a',b) + P(b,at),
Now, take any &, bcS,
2P(byb) = 2P(bga',bea!)
P(b,a?) + P(a',b)

= X
2P(bea,bes )
P(b,l) + P("b )a

80 P is additiwve,




[

N 2

[P OR——

Corollary. The core of a decomposable linear astructure is a linear

structure.
Proof, Let P be the decomposable linear structure and Q its core.
Choose ai,bs# ¢S such that P(a®,b#) > P(b#,an); this is possible by
D3, For any «,psE, the fact that P is linear means
P(atubi,c) « P(a%pbi,c) and P(e,a#8bit) « P(c,attb*)
are both non-negative for all c¢ed or both are non-positive for all ceS,
Without loss of generality, suppose the former is true. Choose )
¢c= aﬂb*, where \eE, apply the decomposition assumption, and collect
terms: | _
P(a#,b*)[Qt,)) = AB,A)T « P(b#,a#)[Q(N,B) = Q(A,4)] > 0,
P(a#,b#)[Q(X,8) « Q(A,x)] ~ P(b¥,a#)[Q(:,2) « Q(B,N)] > O,
If P is reflexive ond transitive, then P(b#,ait) = O and P(a#,b#) > 0,

80 .
Q2 ) > Q(8,1) and Q(N,B) > Q(\,ut), for all AsE

80 Q is linear, If P is additive, theorems S and 6 stute that Q is
additive with X = 1, s0

Qo) = QByA) = 1 = Q(A,«) = 1 + Q(2,p)

= Q%8 ) = QNyx).

Substituting,

[P(a%,b*) - P(bit,an)][Q(«,)) = Q(B,\)] > O,
Since, by the choice of a# and b*, the first term is positive, the
second mst be non-negative, so Q is linear. By theorem 6, all cases
have been covered,

—
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While this theorem gives several necessary conditions for
a discrimination structure to be decomposable, no necessary and
sufficient conditions are now knomn. In section 9, & somewhat
special sufficient condition will be presented.

It is interesting to note the relationship between this
theorem and experimental practice. Thg additive case with X = 1
corresponds to forced choice responses, i.e., where a subject is
not_ permitted to report indifference between two altermatives and
P(a,a) is taken to be 1/2 by definition. The alternative procedure
is to permit indifference reports. One might be inclindd to postulate
that a person will always report indifference between an element and
itself, i.0., he will yicld a reflexive discrimination structure.
But in that case, the structure must be transitive: if a > b, then
the subject must either report preference for a over b or indifference
between them, but never preference for b over a. It is clear that
one would have to be quite optimistic to expect this, and experimental
practice in psychophysics, where an analogous problem exists, is to

use forced choice questions.
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S. Decomposable Discrimination Structures on Risk Spaces
To proceed further, it appears to be necessary to make somee

what stronger assumptions about the underlying space of altermtivpe,
apecifically to introduce the concept of subjective probabilities.

- The intuitive idea of subjective probability is reasonably clear,

and a number of authors have used it to construct theories of
decision maldng, the most elaborate being Savage's [ 7 ]. These
authors have not, however, attempted to uvse the notion of imperfect
discrimination to get at it, and, as I shall attempt to show, this
approach seems to have certain empirical advantages, If E is a
Boolean algebra of events, then intuitively a subjective probability
function § on E is & single valued function into the closed interval
from O to 1 with the propertiess

dle) = 0

0(x) + $(2) = 1.
The first of these .3 certainly not controverzial, since in essence
this is what is meant by the event o; this is not to say that it will
be a trivial matter to identify o in applications. The second
condition ~= additivity -~ has been objected tov by at least ons
persons Edwards [ 1 ]. He has contended that, at least when the
events in E have objective probabilities attached to them, sub~
Jootive probability should be a single valusd function of thess
probabilities, not just of the events., Thus, if « has objective
probability 1/2, then so does £, hence by the additivity condition
the subjective probability of the objective probability 1/2 must
itself be 1/2. This he and others find objectionable for empirical
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reagons. He feels that the additivity condition must go, Others
feel the difficulty lies in identifying ocbjzctive probabilitiss,
rather than events, as basic, I would hold that the subjective
pro’z:abi‘.li‘ti%of heads and tails may and probably’ do differ, even
though they have the same objective probability, bul their sum must
be 1.

On the fase of ity i% would appear that § could not be
determined; howsver, certain adaptutions of tradition paychophysical
methods seem to malo it possible to find ¢ f1um data provided that
the decomposition sssuiption is met (see sextion 7). To develop
these methods, one wory important condition knsz to be imposed upon E,
namely: it must Yo so dense that tho image o D is the whole of the
walt interval. I ra2ll inbtroduce these ideas mdlomatically in
definitien 12, new uging the symbols « and 4o stand for the subw
Jective probabilitice attached to evenis, nub lor the evenis themw
selves,

Let [0yp] cenote the closed interval i.ij« real and o < « < pl,
(0,p) the corresponding open interval and (o,o1 and {o,0) the half

open invervals.

Definition 12. A sct S is cclled a risk space if for 21l a,beS and

£2{0,1],
Rl. a«beS,
R2, a@ = o,
3. akd = Ll ja,
R4, aldb =&,
RS, if either L # O or § # 0O,

ax(bfe) = (a “"‘;“"‘9 b (4=~ Jeo
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Given the two demands on & subjective pvoke: "\‘ﬁmct:lon,

RleRl follow immediately from the corresponding axioms in definition 7,

Axiom RS has no counterpart in detinition 7, and it is controversial.
It is almost ce;‘t&inly false if the probabilities « and B are taken
to be objective; but at the subjective level it has a certain
plausibility. Actually, no results in this paper, save theorem 1,
require nearly so much as RS. Exactly what is used will be examined
following the proof of theorem 7, What Hausner has called a mixture
space is a risk space which also satisfies

R6, if asc = buc for some «e(0,1], then a = b,

(Note: Rl is then z consequence of B2, R5, and R6.) We will have no
occasion to use thiz cancellation »uls, and since it iz controversial
I have chosen to climinate it from the concept of a rigk space.

The next theorem, which will be discussed in detsil following
the proof and in sveceeding ée(ttions, is one of the major results in
this work, It shou’d be emphasized that it hoids for e risk space;
not a weak mixture space.

Theorem 7, Let Q be the core of a decomposable discrimination structure

P over a risk space, then Q(«,8) e Q(x=B). Let R(«) = Q(«) = Q(=x),
then R satisfies

R(qu) = R(«)R(B)y R(«) » -R(~x), for «,ps[=1,1],
R(«)e[-1,1], R(0) =0, R(<1) =1, R(1) =12,

Lot S(«) = Q(«) + (=)o If P is additive then S(«) =1. IL P is
reflexive, then ’

S(«p) = 8(«x)s(B)y 8(«) = s(=), for «,pe(-1,1],
S(«)e[0,1], s(0)=0, S(1)=1.

-
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If Q is continuous and P is additive, then there exists ¢ > 0 guch that

~ &
':'L“"é‘:‘(" P) },f;“’v[onl]
QAUx) = e
1l j&
* g&ﬁ[’l,O]o

If Q is continuous and P is reflexive, then there exist ¢ > § > 0 such that

5 g
i’%‘é‘ 2 Aif «e{0,1]
Q) = 6 €
ot 4P «e[-1,00 5

If P is linear and reflexive, then Q(«) = 0 for « < O.

Proof . By axiom RS of a risk space, (a«b)Bb = aqb, s0
PL(axh Jtb, {adb bio] = P(adib.a)h ),
Using the decomposition agsumption twice on the left and once on the
right,
P(aab,b JA(«sp ) + P(b,anb (g ,4)
= P(akb,alb }A(4,p ) + P{adb,arb )Q(B,«)

- Q(O(sﬁ )[P(éab )Q(X,O) * ?(b’a )Q(O,X)] + Q(ﬁ P )[P(a,b )Q(O,X )"’P(bs' )Q()sgo ]

= P(a,bQ{A,pn) + P(b,a R(3M,a0)

Collecting terms,
P(2,b){Q04,p A(2,0) + Q(B,4)(0,1) - Q(ur,p2)]
+ P(b,a)[Q(<,8 R(0;2) + AR,k R(X,0) = QEA, )] = O,
Let a%x, b be the elements describved in axiom D3, Consider the two
equations obtained Ly the substitutions a = a*, b = b* and & = b#,
b = a%, Since by the choice of a# and b%, the determinant of
coefficients F(at,bi)2 = F{b#,ax)? ¥ 0,
Qen ;81 ) = Q58 R(N,0) + Q(B o )R(051 )0

WP ETp——
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For any « > B, B/4 <1, o0
QUusp) = Ay B )

= Q(1,B/<)R(%50) + Q(B/451)(0s)0

AkOQ
Q«=p;50) = Q[«(1~ £), <.0]

= Q(1- £,012,0) 4-(0,1- EX(0,)
By theorem 5, Q is symmetric, so
Q(u=8,0) = Q(1,8/)Q(«450) + QR /451 )Q(0,4)
= Q(ty8 )6
If < < B, a similar result holds, so QxsB 7 = QAsp o
Thus, the functional equation for Q can be written as:
Q(«8) = A<)(p) + A=Al
We next show that Q(«1} = 0 and Q(1) = 1, From the functional
equation,
Q1) = Q)2 + Q(<1)® =nd  Q(-1) = 22(<1)(1)s
From the second eg.ation, either Q(<1) = 0 o (1) = 172, if Q1) = 1/2,
then the first equation yields A(<1)% =3 - § =}, o0 (1) = /2.
I¢ Q(<1) = O, then the Pirst equation reduces to Q(1) = Q(1)?,
sc Q(1) = 0 or 1. But in the proof of theorem % we ashowed Q(1) ¥ Q(=~1),
sc Q(1) =1 and Q(~1) = O,
If R is Gafined as in the statement, then using the functional
equation for Q,
R(8) = Q) = Ap)

2 Q(e)A(R) + Q- R(=p) « A=) = A« )(=B)

e [Q«) = Q(=e)]Q(B) ~ A(-8)]

= R(«)R(B ).

DA Bk & &
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The other conditions on R follow immediately from the conditions on Q.
I£ S is defined as in the statement, then by thecrems 5 and 6
S = 1 for P additive. If P is reflexive, then
S(@) = Qup) + Q(=p) |
e QU)A(R) + QU R(-B) + A= A(p) + Q(«)A(=B)
= [Qx) + Q(=x)I[Q(p) *+ Q(p)]
= 8{«)8(p ).
Again, the other conditions are obvious.
If Q is continuous, then so are R and S, and it is well known
that the functiona). equation for E ls solved by
£ s i «¢[0,1]
[«|® 5 if «e[<2,0], _
for some ¢ > 0, Similarly, if P is roflexive,

R(«) =

S(«) = |.46 , if ue[-1,1]
for some 6 > O, The expressions for Q are obtained by noting Q = (R + 8)/2.
Sincs Q > 0, 1l Ifollows that ¢ > o

Let P be 11near/;nd reflexive, and suppose Q(-)) > O for

A>0, let «=(\) , then
QA(=2) = Qlowtek) = 20(x (=) > 0,

and g0 Q(«) > 0 and Q(=«) > 0. Thus,

Q(~«,0) = (=) > 0 = Q(0) = Q(0,0),
and

Q=xy=) = Q(0) = 0 < Q(«) = Q(0,x),
hence Q is not linear., But this contradicts the corollary to theorem
6, 80 Q(«) = 0 for « < O,
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In addition to the continuous solutions to the core equations,
two discontinuous ones are worthy of note, First,

1 , if «£(0,1]

Q)= O »if £=0andP is reflexive
1/2, if « = O and P is additive
0 , if «&[=1,0)

This represents perfect probability discrimination. Second, if P is
additive, _ 4

Q«) = 1/2, 4f «s(~1,1)
and if P is reflexive,

Q) = 0, if «e[<d,1).
This core represents a total failure to discriminate between any
probability pairs except the extremes O and 1. Iater, in theorem 12,
we will show that these are the only discontinuous corea for
decomposable structures having linear utility functions.

Theorem 7, wtile not particularly difficult to prove, seems
to be sufficiently luportant in its consequences to bear gsome scrutiny.
First, it should be kept in nmind that it holds for all decomposable
discrimination structures over risk spaces, not just linear ones,
Second, it re;ta on at most three assumptions which can be considered
controversial, the degree to which they are controversial depending
upon how the probabilities in the risk space are interpreted. The
assurptions are axioms R3 and RS and decomposability, i.e.,
statistical indapendence of pnfmm and probability discrimination.

As indicated earlier, we shall come to interpret the
probadbilities as subjective probabilities attached to events == the
main reagon, beside intuition, is given in section 7. However, a
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mmber of poap:l.o have been anxious to use objective probabilities in
utility theory, at least when the theory is interpreted normatively,
80 let us examine the three assumptions assuming that objective
probabilities are intended,

Clearly, axiom R3 must be met, so we may turn to axiom RS,
In the proof nothing so strong as axiom RS is ever used; the assumption
sctuslly made is that | .

P[(slb)-(b.(ﬂb)ﬁb] = P(a.0b,ap)b),
This would follow, for example, from the postulate (a.b)gb = asgb,
which can be paraphrased as saying that there is "no love or hats of
gambling." Critics of modern utility theory have pointed out that,
at least for objective probabilities, this assumption is more than
likely in errors yet, it must be assumed if preferences are to be
represented by linear utility fumctions, which are so important in
most applications of utility theory to decision theory.

The independe.ce assumption, it is true; Las no tradition
in utility theory, but it certainly has an honoradble history in
probability theory and its applications in science. In any case, if
for whatever reasons these two assumptions are acoepted, and if Q is
assumed to be continuous as is customary in senscary psychology and
as will be defended in theorem 12, then the form of Q is completely
determined up to a single oonstant in the additive case and two
constants in the reflexive case (which reduce tu ome if the structure
is linear):

It is an empirical question of some interest to determine
vwhether in fact these are the forms of the psychophysiocal functions
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for the discrimination of objective probahbilities. If they are, then
presumably the constants ¢ and § are fairly basic parameters of human
discrimination, and their distribution in thg population should be
investigated., As we shall see in section 10, it is of interest to
know whether they are (approximately) constant or whether they vary
from person to person.

It strikes me as doubtful that this experimental step can be
bypassed, for the derived forms for Q do not seem completely outrageous
in the light of one's intuition about probability discrimination and
from what has been found for other psychophysical dimensions., Several
casos are plotted in Figs, 1 and 2, One thing to note is that if
there are any smell errors, then with only slight amlle: probability
there are some quite large errors of judgment. Possibly, this
corresponds to the sense of difficulty one has in making relative
probability judgnenf:s except for the moat extreme values.

If, however, we are not so fortunate -~ and I do not believe
we are =« as t0 have derived the correct form of the psychophysical
function for objective probabilities, then to have & descriptive
theory of preferences based upon objective probabilities one or the
other or both of the major assumptions must go. This is to say, in
at least one of two ways people mst be inconsistent in their caloula-
tions of compound preferences from the sirmpler ones and from ocbjective
probabilities, Naive observation strongly suggests that RS = no love
or hate of gambling =~ should be dropped, but that would mean dropping
linear utility functions which, in twm, would collapse most of
decision theory. Thus, clearly, the most likely outcome is either a

- e
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Fig. 1. Continuous cores for decomposable
additive discrimination structures,
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Fig. 2, A contimuous core for decomposable
reflexive discrimination structures,
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hasty retreat from the independence assum ption or the admission that
descriptive theories must be based upon some concept of subjective
probability in the risk spaces. I shall argue for the latter course,
Incidently, if it is accepted, it is not an unverifiable hypothesis
which manages to save every conceivable empirical situation. The
very specific conclusions of theorem 7 continue torplace strong demands
upon empirical data, even when subjective probability functions are
admitted.

In connection with these points, a remark about normative
interpretations is in order. It has been customary to argue that,
while many of the assumptions of utility and decision theories are
somewhat unrealistic for objective probabilities, they do represent a
desirable form of consistent behavior; and, therefore, the theories
can be treated as normative prescriptions for simplifying decision
making, Certainly, RS has been considered in this light, and it
should not be too difficult to gain (firom theae ignorant of theorem 7)

similar acceptance for the decomposability assumptions however, the
theorem states that these normative considerations impose tight con-
straints on a psychophysical function. It is not at all clear that
such functions are ever under conscious control or are evan subject
to serious modification by training, Thus, unless the derived
functions are the actual forms for probability discrimination data, or
unless we demand complete knowledge of:g:foct discrimination among
objective probabilities, this result reaises some doubts about casually
giving normative interpretations to inadequate descriptive theories.
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6, Utility Functions and Sensation Scales

The following definition is in close conformity to traditional

usage,

Definition 13, If P is a linear structure on S and the induced weak
order is 3, , then any real valued function on S which preserves the
order of 3 , 1.0.; u(a) > u(b) if and only if a 3,b, is called a
utility function of P, If S is a risk space, a utility function u is
called linesr if .

‘ u(ad) = «u(a) + (1~ )ulb),
for all a,beS and «2[0,1],

Ha]imarstructum?onsmtheprapgrtythatthm
exists a#eS such thet a > b implies P(a,a®) > P(b,a%), then P(a,an)
is a utility function of P. Many empirically interesting cases will
probably have such an element ait,

It is clear that if a linear structure has a utility function
u, then any strictly increasing function of u i3 equally a utility
function, Thus, if no further specifications are imposed, there is
1ittle if any point in introducing numerical representations of the
weak orders, Historiecally, two quite distinet traditions for re-
stricting the class of admissible utility function have developed.
Utility theorists, assuming weak orders over mixture spaces, not
linear structures over risk spaces, have concerned themselves with
the existence of linear utility functions, The reasons are largely
pregmtics it hag been practically impossible to devise mathematically
interesting decision theories if utility expected values do not
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represent the utility of risky situations, The von Neumamn axiom
gystem was devised to give an intuitive justification for restricting
one's attention to limsar utility functions; the criticisms of it are
well lmown and need not bs entered into here,

At the same time, a much older tradition for selscting "utility"
functions exists in paychophysica.? It traces back to the middle of
the last century when Fechner postulated the @quality of just notice-
able differences as the defining property of subjective sensation.

In more recent work, one postulates a linear structure P on the

positive real line, and the idea =~ which we will specify more precisely
in definition 1} =~ is to find those utility functions, if any, which
render P dependent only upon utility differences. It is argued,
largely on philosaphical grounds, that a subjestive aensation scale

must have the property that the probability of detecting a difference

on that scale depends only upon the difference and not upon its

location on the sc2le, In practice, this deinition has been found

to be related to other intuitive concepts and to have been both useful
and stimulating in psychophysics.

When S is taken to be thepositivprealaandl’iaumdto
be strictly monotonic in its two variable, conditions are known for
the existence of such scales (which are unique wp to a linear trans-
formtion) and their analytie form has been given. The reader should
be warned that the traditional mathematical formulation of this

2he word "utility" as it is being used hers is nothing but & mathe=
matical labels it should not be interpreted as imputing values into

peychophysical judgments.
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problem is in error; the correct formulation and solution may be
found in [ 5 ]. The magnitude of the error is sufficiently large
that it now appeu's:?:me incorrect conclusions probably have been
drawn from empirical data,

I know of no attempt to interrelate these two dis‘_t.imt
traditions, Presumably, this is because, on the one hand, there has
not been a probabilistic theory of utility, so it has not been
possible to impose the psychological condition there; and, on the
other hand, the idea of a risk space seems to make no sense in
m‘aditional sensory psychology, so linearity could not be imposed
there. However, once a general probabllity model is postulated, the
psychological condition can be extended Yto all linear structures having
utility functions, and‘ 80 in thq domain of risk spaces there are two,
apparently conflicting, criteria of selection., Part of the material
in this section (theorem 8) and part of that in section 9 (theorem 15)
establish that fo- an interesting class of li.car structures on risk

spaces there is no conflict: the two concepts are the same.

Definition 14, Let P be a linear structure with a utility function u,

u is said to be a sensation scale if for all a,beS, P[u(a),u(b)] = P(a,b)

depends only uwpon u(a) ~ u(b),

Thearem 8, lLet P be a linsar structure on a risk space and suppose P
has a linear utility function u, then u is a sensation seale if and

only if P is reguler, |
Proof. Suppose P is regular. let a,b,c,d csra;ch that u(a)-u(b) =
u(c)-u(d). We must show P(a,b) = P(c,d), Suppose, with no loss of
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" P(e,ead) = P(buio,b), s0o P(asb) = Ple,d)o

generality, that u(b) < u(d). We consider the case u(a)-u(b)> 03
the other case is similar. Thus, u(b) < u(a) < u(c). By the
linearity of u, there exists an &s(o;l] such that

u(a) = «u(b) + (1w)u(e) = ulbue),
80 8w~ buo, Hence, P(a,b) = P(bic,b). Using the assumed

relation of the elements and the linearity of u,
u(d) = u(e) « u(a) + u(b)
= u(c) - u(b«e) + u(b)
= «u(e) + (1~ Ju(db)
= u(cad ),
80 d wwesb, Thus, P(c,d) = P(eyedd)e By the regularity of P,

Conversely, suppose u is a gensation scale. By linearity,
u(a) = u(adb) = (1~<)[u(a)ea(b)]
= u(bsa) = u(b),
for any a?bes and .:.e[D1] Since u is a sensation acale;
P(a,asb) = Plu(a)u(asb)] = Plu(bsa)=u(b)] = P(bus,b),
and 0 P is regular,
Corollary. Any linear utﬂii_'.z function of a decomposable linear ' ,
struwture is a sensation scale, |
Proof, By theorem 6 a decomposable linear structure is regular, so
by theorem 8 a linear utility function is a sensation scals, ,
This corollary means that any deoonpoaébh linear structure
#1th a linear utility function u can be represented completely by the
uﬁhtyfmﬁonmdmotherz‘ﬂvﬂudfmﬂonotammbh,
namely Plu(a) - u(b)].
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We will return to this general topic in theorem 15, vhere it
‘ia shown under slightly stronger conditions that a semsation scale is
a linear utility function,

The concept of regularity bas its parallel in the semiorders
induced by linear structures.

Definition 15, A semiorder (L,I) on a weak mixture space S is called
regular if for every a,beS and «¢E, al(asb) implies (bua)Ib.

Theoren 9, hthoangnmstructmonammnmm

and let k be & mmber, 3 < k < 1, then the semiorder (1,,T,) induced
by definition 5 is regular, |
Proof. Ey definition 5, aI,(asb) is equivalent to P(a,ad) <k and
P(a.b,e) < ko By the regularity of P, P(bua,b) = P(a,adb) < k and
P(b,bua) = P(aub,a) < k, s0 (buaa)Lbe

Tt is plausible that an analogue to theorem 8 holds for
semiorders, with the notion of jnd functions (see [ 4 ]) replacing the
probability of discrimination, This is true; however, an important
modification is necessary: the assumed linear utility funection must
be unbounded, otherwise the obvious boundary effect prevents the jnd
functions from being everywhere constant. (The following theorem was
presented in technical report 13 and is repeated here for the sake of
completeness. )

Theorem 10, Let (L,I) be & semiorder on a risk space, and suppose it
m.mmmwnmm’m;.;mrmeuommm

Iefinition 3 of [4] is intended here.
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different from gero. The jnd functions are constant and equal if and

only if u is wnbounded and the semiorder is regular.

Proof. Suppose the Jnd functions are comstant and equal. Since they
are different from zero, u mst be wnbounded, Suppose alI(a«b), then
by theorem 2 of [ L ],
u(a) - 5(a) < u(ad) < u(a) + 3(a).
Using the linearity of u and subtracting u(a),
=8(a) < (1=t )[u(b)eu(a)] < B(a).
From the equality and constancy of the jnd functions,
<B(b) < (1=)[u(b)eu(a)] < 8(b).
Adding -u(b), changing signs, and using the linearity of u, we obtain
u(b) + B(b) > «uld) + (1=t)u(a) = u(bea) > uld) = &(v)s,
So, by theorem 2 of [ L ], (b«a)Ib, and the semiorder is regular.
Conversely, suppose that u is unbounded and that the semiorder
is regular. It will be recalled [ L ] that for a,beS such that alb,
the two quantities
“(a,b) = sup[«| (axb)Ib]
£(a;b) = swpl« (bua)ial °
were defined; these were shown to be close‘.l-;&je]atod to linear utility
funetions, For regular semiordsrs, we ehawAthey are equal. By the
regularity of the semiorder,
“(ast) = supl«| (asb)Ib]
< supf«| (bua)la)
= «(a,b)o

Similarly, «(a,b) < «(a,b), so they are equal
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by axioms R3 and RS ¢f a risk spacs,

o 3 -

Consider any asS, Since u is unbounded; there exist a¥;b#eS
such that a*la and alb*, With no loss of generality, we may choose |
u to be that linear fuaction with u(a®) = 1 and u(b#) = 0, Since
the jnd functiona newisr equal zero, we know by the remarks following
theorem 4 of [ L4 ] that i

B(a) = Gi(a#,a)(1ou(a)] and 5(a) = «(a,b*)u(a). !

Loal i
Since u is linear, there exists x¢, such that a -~ a®ib#, where -~ denotes ‘

the equivalence relation induced by a semiorder, and u(a) = &, B
Thus,

8(a) = Z(ak andbe)[1lw] and 5(a) « slaktabi bt )t

= 4(a# atd#)[ 1] = Z(asdb, b M.

ER Y ey

We now show «(ait astdbi) = T%JZ A(asgbit) and ?(a%*gb*)-% “(astybit ),
Obgerve, a*L(a#.bi#), so by definition,
Alat,atds) = sup {Bl [(amb*)pa*]]:a*} o

b sen am eme o

(andn par = [br(lax)arnlp. -
= bi(lew Jpax.

Ala,andr) = sup{pl [g&(l«.t)pa*]h*}
= suplp} (brpax)iax] ”
= g alan,pe),

since a#lb*, The other case is similar., Using these results and the

fact that «(a# b#) = L(axb*), we have

B(a) = x(a#;bi) = 6(a).
A sirple industion now establishes that the jnd functions are constant
and equal.

o
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7. Subjective Probability

Recall that in theorem 7 it was established thatl “he core Q
of a decomposable discrimination structure on a risk apace has the
property that Q(«;8) = Q(«=f) and that in the corollary to theorem 6
it was shown that the core of a dscompoesable linear staucture is
linear, Thus, for those linear structures where the we:k order in-
duced upon [0;1] by the core is the natural ordering of [0,1] by
numerical magnitude, the underlying probabilities of the risk space
form a gensation scale for Q. As is easily verified, this is the case
when Q iz contimious <~ an assumption which, as we shall see in the
next theorem, probably will always be made in empirical work and in
applications of this theory., Thus, if there is any sence to the psy-
chological agsumption that the sensation scales of linesr structures
rapresent subjective sensation, then for lineay structures on risk
spaces we have shown that the assumptions of dscomyosability and of
continuisy of the core imply the probabilitic: rubering into the risk
space must be subjeitive probabilities, The inmplications of this for
experimental practice and a sketch of how empirical data car be used
to get the subjective probability function will be presentec after the
next result,

Sincs these conclusions seem teo be important for ttility theory.
it 1s of intarest to kmow whother the assump:ica of contiruity of the
core is o sericus restriction cor whether it is safe to sasume that it
is genorslly met. The following rondition. which will play an important
role in *he neybt two sections, rarms adequate. It will e noted that
if & linear st‘rﬁct‘ne has a linear willity fimetion . the condition is

satiaficc.,
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Definition 16. A linear structure on a weok visk space is called

consistent if for every 2,beS such that a > b and Fla,b) # P(b,a) and

for every «£,pe[0,1] such that « > B, then 2osb x agb,

Thzorem 11. The core of a deconpesable consisteny linear structure is

either continucus or one of the vwo discontinuous cores deflned follows

ing theorem 7.
Froof, lLet P be the structurse and Q its core. Wo first show that if

‘> pi%ﬂen Q(«) > @{8). By axiom D3, thers =zist a¥b*eS such that
P(ax,b#) § P(b%,ax), and there iz no loss of gsnerality in assuming |
a® > b¥*, Consider « > ﬁiiixen by definibtion o and the consistency
assumption, Pa®ni b#) > Plawgbit.b¥), Using the decomposition assump-
tion and theorem 7.

P(a#dbitb) = P(a®b%*)Q(«) + P(b¥. 1 A(-u)

P(apbt b%) = P(aw bt R(B) + P(b.irRU-B )e
By thsorem 6, P ic wither transifive crx additi:e. If it is transitive,
P(ai,bi) > P(bi,r . = 0y 30 Q) > Q(R): If & additive, then by
thaorem 5. Q) + O{-) = 1, =0

0 < Plawmbitybit) - Plaupby o)

= [P(a#,bit) » P(bx,a%)][Q(«) = Qg )ie

Since; by choice, the firet term is positive, Q) > Qg ).

© Let R(«) = Q(«)=Q(~). If < > O, then by theorems 5, 6, and T,
N(«) =1 , if P is additive
R(«) = Q(«) s if P is rerlexive ’
If Q hag a discontinuity at \e(0,1), so does R. Since Q is non~
decreasing, so is R, hence the discontinuity 1s a jump, For any «,
A<«<1,andf = A, theorem 7 implies )
R(\) = R(«¢) = R(<)R(B),

8o there is a discontinuity at either « or . Since A< 1l andR
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is non-decreasing, there are a non-denumerable number of jumps, which
is impecssidle since R is bounded, Thus, the only discontinuities can
be 8t O L rrse 1is a discontinuity, then there exists & > O such
that for any «e[0,1), R(«) < 1=6. Consider any pe[0,1) and any integer
n > 0, Clearly, there exists an «e[0,1) such that <" = B, so by induction
R() = R(LS) = R(P < (16)7,
so R(«) = 0 for «e(=1,1). If P is +transitive, then Q(«x) = 0, and
if P is additive, then Q(«) = 1/2, for «e(<1,1). This is the second
discontinuous solution described after theorem 7o
Next, suppose there iz a discontinuity at 0. Suppose P, and
therefore Q, is transitive and that there is a Ae(0,1) such that
Q(A\) =1 86<1, For any ¢ > 0, there exists an integer n such that
AO®) = Q) = (1=6)" < €, Since Q 1s non-decreasing and Q(0) = 0,
this shows Q is continuous av 0, contrary to assumption. If Q is
additive, a parallel argument holds using R. Thus, Q(«) = 1 for
«e(0,1], which is the first solution described. and the proof is concluded.
These two discontinuous solutions reprezent, it will be recalled,
total failure to discriminate probability differonces except for the
most extreme values and perfect discrimination, neither of which people
can be expectad to exhibit., Thus, all that can arise in practice under
owr agsumptions are the continuous solutions. This means that if the
decomposability assumption is met by a consistent linear structure, and
80 by any linear structure having a linear utility function, then the
risk space must be constructed from subjective probabilities, where a
subjective probability function is defired to be the sensation scale of
the linear structure characterising the discrimination of the underlying

event space.
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With this interpretation of the probabilities of a risk space,
it is no longer apparent that axiom RS is false; however, axiom R3 is
now also thrown into doubt., These and the decomposition assumption
will have to be examined empirically. A plausible empirical procedure
is ocutlined below,

A bagic get of indspendent events is chosen (e.g., including
coin tossing, the next day'a woather, the fifth letter of a certain
line of a certain page of a certain book, etc.) from which E is con~ -
structed, and the probabilities of preference among pure and risky
alternatives based upon thece events are discovered. Two cases should
be examined: monetary gambles and non-monetary ones. As we shall see,
theorem 13 leads one to suspect that there may be quite striking
differences between these two cases., From these data, the right side
of the formula following definition 8 is computed, If it is not
independent of the alternatives a and b, then the decomposition
assumption is not valid, so none of the resulis apply and we are stuck.
If, however, it is independent of the alternatives, then we have an
empirical estimate of Q. From Q, the ordering > is determined according
to definition 2; if this is not a weak order, again we are stuck. If,
however, it is, then choose any of its utility functions, call it u,
such that u(e) = 1 and u(o) = 0. We can then transform the data for
the discrimination of events into discrimination of the real numbers
u(«) by defining

Qlu(«)yu(p)] = Q(«,8), where «,BeE.
This now formulates a conventional psychophysical problem, and the
standard calculations, described to some axtent in [ § ], can be adapted

e e
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to find an approximation to the function x which transforms u into a
sensation scals, The function §), where §(«) = n[u(«)], is then the
subjective probability function for the event space E. With § kmown,
the additivity postulate ¢(«x) = 1-(X) can be checked,

If the assumptions underlying theorem 7 are wvalid, then we
know that the empirical data Q and the function § must be related as

follows: in the additive case,

Wuop) = 1+ [1’(&%“0(9)15 , if B(«) > §(p)
) [Q(Bg - §()1° » 12 $(<) < b(p)

and in the transitive case,
e
D<) = §(8)1 , 3£ $(<) > d(p)

Q(“: )=
P 0 s 1f §(«) < d(B)

where «£,BeE and ¢ > 0, With ¢ known, it is a matter of estimation -
probably by curve fitting == to obtain &,

It will be noted that each of the cemtral assumptions is tested
separately, The decomposition assumption first, then the linearity
of P (either directly or via the linearity of Q), R3 via the additivity
of § once it is computed, and finally RS by finding whether Q has the
correct form or not.

It is to be hoped that some experimentalist will f£ind this
(very 1likely exmcting) task of interest. It is certainly intriguing
to find out whether the discrimination of preference and of subjective
probability are statistically independent processes, and, if so,
whether subjective probabilities meet the additivity condition.
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Furthermore, if E is chosen to consist of events having well defined
objective probabilities, there will be interest in the relation between
subjective and objective probabilities -- a topic which has received
some speculative attention in the past,

8. Archimedean Structures
In this and the following section we shall be concerned with

a particular class of linear structures which, as we shall see in
thearem 1llj;, have linear utility functions provided that there is
neither perfect discrimination nor total failure to discriminate among
the probabilities of the underlying risk space. The new restriction
is one of the axioms irposed by von Neumann on weak orders to prove the
existence of linear utility functions in that context.

Definition 17. A linear structure on a weak risk space S with the

induced weak order > iz said to be an Archimedean structure if, for

all a,b,ceS satisfying a > b > ¢, there exists an «£(0,1), such that
b ate.

Clsarly, any linear structure having a linear utility functioa
is Archimedean,

The next result, while mildly interesting itself, is primarily
needed to prove the following two more important theorems.

Theorem 12, A decomposable Archimedean structure on a risk space is

consistent.

Proof, Consider a,beS such that a > b and P(a,b) ¥ P(b,a) and
«sp8[0,1] such that « > B. First, we show that &b X agb if the core
has the property that Q{o) = Q(~g) far all os[0,1), Consider any csS,
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then if ¢ > a > b, the Archimedsan condition states that there exists
As(0,1) such that a —~cAb. Using axiom Rl and the decomposition
asguption, |
?(a,b) = P(c\b,elb)
= P(c,b R(N) + P(b,e (=)
s Q(A)[P(csb) + P(bye)],

and
P(bsa) = P(cOb,edb)

= Q(A)[P(e,b) + P(b,e)]e
Thus, P(a,b) = P(b,a), which is ocontrary to choice, 80 a > ¢,
Simlarly, ¢ > b,

Using either the Archimedean condition or axioms R3 and Rk,
for any ceS there exists oc[0,1] such that ¢ acb, We distinguish
three cases:

1. £=20, Thenp = 0, aoub-bl'apbo
4. 4=1m§a=0. In this case, c~ b, 80
P(apb,c) = P(apb,b)
= P(a,b)Q(p) + P(b;a)(-p)
< ®(a,b)[Q(p) + Q(-p)]
< P(a,b)
= P(alb,b)
441, A1l other values of < and o, Note, «-os(=1,1), so
P(asb,c) = P(asb,aob)
= P(a,bR(«-0) + P(b,aR(0-)
= Q(«=o')[P(a,b) + P(b,a)].

In a similar way,
P(agb,e) = Q(p-o)[P(a,b) + P(bsa)].
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We now show that Q(p) = Q(2) 1f pyhe(=1s1)e If P is additive, then
by theorem 5, 1 = Q(p) + Q(-p) = 2(p), for ps(=1,1), 80 Qlp) = 1/2,
If P is reflexive and transitive, then since apb > b and P(b,a) = 0,
0 = P(a0b,apb) = Q(=p )P(a,b),
80 Q(p) = Q(=p) = 0, With this equality, we may conclude
Pasb,c) = P(agbse ),

Combining these cases, P(atb,c) > P(apb,c), for all csS,
Similarly, P(c,add) < P(c,apb), for all ceS, eo by definition 2,
asb 2, afb,

Now, suppose that afb > ab, then clearly « > p and by what
we have just shown there exists xoe[o,l) such that Q().o) b Q(-).o).,
First, we ghow that & > apb. If not, then by the linearity of P,
agb > a > b, By the Archimedean condition or axiom Rl there exists
pe(0,1] such that a “~(agb)b. By axiom RS, a v1a8pb, By the
decomposition assumption and axiom Rk,

P(a,a) = P(appb,ald)

= P(a,bQ(pp-1) + P(b,a)(1=p)

= P(alb,appb)

= P(a,b)Q(1-Bp) + P(b,a)R(pe=1)s
Subtracting,

0 = [P(a,b) ~ P(b,a)][QBe=1) ~ A1=pp)].
By choice, the first term is nonezaro, so Q(pp=1) = Q(1-fp).
e coclo,:l] has the property Q(co) - Q(""o)’ then we show

Q(o) = Q(«o) for adl ot[O,col. Let 0 = Mo, vhere As[0,1], then by
the functional equation derived in theorem 7,
Qo) = Q(wo) - Q(X)Q(co) + o(-m(-o,,)
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= Qo )[Q() + Q(-A)],

Q=) = A-g,) = A-ANAe,) + ANR(-o,)
= Qo )AM) + Q)]

Thus, Q(c) = Q(w0). By hypothesis, there exists A ¢[0,1) such that
Q(xo) # Q(-).o), 8o for any A > A , the inequality holds. If o, > O,
thenclurlyaoandxocanbe chosen arbitrarily close, so there
exists o > A such that o° < 0. Using the functional equation for Q,
Qo?) = Qo)2 + Q02

° Q(-0%)

= Q(o (),
so [A(c) = A=0)}2 = 0, which is contrary to the choice of g. Thus,
00-0, so fo =1, But this is impossible since p<landp <« <1,
80 we must conclude a > afb > axb,

The Archimedean condition is used once again to f£ind As(0,1)
such that afb vrah{asb) = a(ethaA )b, An argument similar to that
just employed establishes that B = £ + (1=« )\, which is impossible
since p < «o Thus, P is consistent.

Theorem 13. Let P be a decamposable Archimedean structure on & risk
space S and let Q be its care. If there are elements a,bsS such that

P(b,a) = 0 and either P(a,b) = K in the additive case or P(a,b) = 1

in the trensitive case, then either Q(«) = 1 for «s(0,1] or a2 c 3 b
for all csS.

Proof, Let C dencte X in the additive case and 1 in the transitive case,

Suppose ¢ > &, then by definition 2, P(c,b) > P(a,b) = C, 8o P(c,b) = C

P . .
R - - - - -
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and P(b,c) = O by definitions 1 and 10, By the Archimedean condition,
there exists an «6(0,1), such that aw~cud, so
P(ayb) = C = P(csb,00b)

= P(oybQ(«) + P(bye Q=)

= CQ(«)o
Thus, Q(.()‘ = 1 for an «££(0,1), By theorem 12, P is consistent, so by
theorem 11, Q(«) = 1 for all «e(0,1]c Similarly, either ¢ b or the
same core exists.

This result seems to have considerable import for experiments
and applications of utility theory. Any realization of a risk space is
generated by forming probability "mixtures" from a finite number of
"pure® or "basic® alternatives. It is probably safe to assume that
usually there will be more than two alternatives and that the subjects
will be incapable of perfect discrimination among the underlying events
(1.e., subjective rrobabilities) of the risk space (i.e., not
Q(«) = 1 for all «¢(0,1)). Now, if the subject is capable of perfect
discrimination among three or more basic alternatives, then the theorem
establishes that either his preferences cannot be represented by a
linsar utility function or his preference discrimination between
alternatives is not independent of his discrimination between
(subjective) probabilities. Judging by our almost daily fluctuations
in preferences among many classes of alternatives, this result is
probab]y not of vary serious consequence for a wide class of situations;
however, such fluctuation may not occur for one very important
commodity —- money. It seems plausible to assume that, other things
being equal, subjects will invariably prefer a larger to a smaller
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m.h If such is the case and if there iz any reason to believe that
the utility for a gamble of money is given by the expected value of
the component utilities, then the preference struwture for gambles
camnot arise from indspendent judgments of preference among the
alternatives and judgments of the magnitudes of the probabilities
involved., Preferences must statistically influence the mﬁm of
probability differences! If such distortion does not occur, then the
utility for money camnot be a linear utility function. In any event,
gince most, if not all, of the experimental situdies relating to utility
theory have involved money gambling situations, considerable caution
must be exercised in generalizing such experimental results to
commodities and alternatives which differ from money in not possessing
a culturally accepted simple ordering.

9. Existence of Linear Utility Functions for Decomposable Archimedean
Structures

The next result establishes that all ducomposable Archimedean
structuwres on a risk space, except those having one or the other of the
possible discontimuous cores, have linear uwtility functions, It will
be noted that this existence theorem amploys somewhat different assump-
tions {vom those used by von Neumamn, The two systems have
R1-R5 and the Archimedean condition in common., The decomposability and
continuity assumptions are different; indeed, they have no meaning for
weakly ordered sets. The von Neumann axioms not assuned ares

"Indimsingt!ﬁaresultuifhﬂardm,hopointodoutthatsm
of his subjects have exhibited peculiar reversals, o.g., sometimes

mrm-ﬁz 1,00 to 4,03, However, if the set of alternatives in-
cluded §1, 2, and 3, it is doubtful that such reversals ever will be
ezh:;:itodformofthetlmepdra, in which case our conclusion

holds,
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i1, if a2 b and «£(0,1); then axc 3 bxe for any csS,

11, if axc 3 buc for some «5(0,1), then a 3 b,
and 114, axiom R6,
We could prove existence by showing that the Archimedean and
decomposability assumptions (the latter in the form of consistency)
imply 1, 11 and iii; however, since we can get a more precisec result
than mere existence, we will go about it directly.

Theorem li. let P be a discrimination structure on a risk space S.

P is a decomposable Archimedean structure with contimuous core Q if
and only if there is a linear utility function u and P is of the

following form: lel a¥%,bieS be elements described in axiom D3 with

a# > b# and let u bo chosen g0 that u(a*) » 1 and u(b*) = 0, then

io_i_f.Piaadditive,thereisanc>Osuchthat

3 {x + [P(an,br)p(o%,a0)] [n(a)u(®)1%} , if u(a) 3 ulb)

P(a,b) =
7T 10k - (plan,be)B(brat L )a@d |, 1t o) < u(b)
and i1, if P is reflexive, there iz an ¢ > O such that
Pax,b#)[u(a)u(d))® , if u(a) > uld)
P(a,b) = ‘
, if u(a) < u(b)
In both cases;
1/
I:P(a,b*) - P(b.a) , if a > b%
ua) = P(ast,bi )=P(bs,as) 1/e — .
1 . P(a*ba)"’P(aj_a_*) s if a <b®
P(a#,b# }P(bx¢,a) -
et | At

Proor. Supposs P is docomposable with a continuous core and Archimedean.
By theorem 7, we know the form of the core up to a constant s; define u as
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in the statement of this theorem using this e, Clsarly u(an) = 1
and u(bit) = 0, Consider any otber acS, and there are three cases to
consider:

i. If a > a¥ > bit, then by the Archimedsan condition there
exists an «£6(0,1) such that a%\Aabi, By the decomposability
agsumption and the axioms of a risk space,

P(as,b#) = P(asb#,alb)
= P(a,b#)Q(«) + P(b#,a (=)

P(b#tya%) = P(a0b,a%)
s Pla,b# R(wt) + P(bita (<)o
Subtracting and substituting the known form ror. qQ,
P(a¥*,b# )oP(bt,a%) = [Pa,b)-P(bk,a)]C,
so u(a) = 1/«.
i1, If a* > x> b, then there exists an « such that a - aibi,

and by a similar argument, u(a) = «

i1ii., If a® > b* > a, then there exists cn « such tlntb*vsma.;
and by a similar argwment. u(a) = «t/(1ex),

First, we show u is order preserving, If a > b, then there
are several cases depending upon their location relative to a# and b,
We consider two typical cases. If a > a2 b > b#, then u(a)> 1> u(ble
If att > &a > b > bit, then by the Archimedean condition there exist
«,p¢(0,1) such that & avdbi, b a¥pbity and from sbove, u(a) = «
and u(b) = po If < < B, then, since P(az,b*) f P(b¥,et), the con~
sistency of P (theorem 12) implies 2 « atd* g a#fb# b, contrary to
hypothesis, Thus, u(a) > u(b),
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Second, we show u is linear. Again one must consider a mumber
of cases, of which ve will consider on]ytym If a® > &,b > bit, then
by the Archimedean condition there exist «,86(0,1) such that & “»akb#
and b v a#pbit, Using the uiom of a risk space it is not difficult
to show @b v»a#[O+(1=))p]bkt, s0 u(add) = A + (10)p = amfa) + (-2 )u(d)e
As a second example, suppose a > a\b > a¥ > b > b, Then there exist
£,f50¢(0,1) such that ait \aub¥, bonaipbi, and ak (22b Job*, Again
uging the axioms of a risk space, b~ ab¥, 80 a# v (a)b Job* “Aapbit,
where p = (A + 4 = M@)o, Using the decomposition asammtion',

P(a*,ait) = P(apbit;aubit)
o P(a,b# Q(p) + P(bi,a )A(«<=p)
o P(adbit,apb)
= P(a,b#R(«=p) + P(b#,a)(px)
Collecting terms,
0 = [P(a,b# )=P(b#,a)1[Qp) = As=p )]0
Since, u(a) = 1/« > 0, the first term is not zaro, so the second one
mst be, Since Q is contimuous, this implies « = po Rewriting,
u(adb) = /e = 3/« + (100
« Ja(a) + (A=2)u(db)s
Next, we establish the form of P. As above, thore are a
mmber of cases to consider and we will only examine one, mamely,
a>ax>b>ba Letd » u(a)=u(b). By the Archimedean condition,
there exist «,p8(0,1) such that a* “»ad* and b\ aspbh, so
ala)a(d) =3 - = A, Also, biragbr, Using these facts and the
docomod.tj.on mtion, it. is easy to show
P(a,b )=P(a#,b#) = P(a,b*)[Q()Q(«)] + P(b#,8)[Q(= }Q(~w)]e
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If P is additive, then the additivity of Q and its functiomal equation
imply that: '
Qe JQ(4) = «Q(=n)[Q(« }=Q( )]
= o[Q(eh }Q(x)]5
Substituting this plus the easily verified fact that
. P(a#,b# )-P(b¥,a%) = [P(a,b#)=P(b¥;a)][Q<)Q()]
yields,

P(a,b) = P(a®,b%) = [P(a,b#)-P(b*,a#)]Q(L),

Substituting the known form for a continuous core yields the result.
If P is transitive, the argument is gimilar and a 1little simpler,

The converss is immediate if one simply sets up the two sides
of the decomposition equation, substitutes the given form of P and
uses the linearity of u. _ .

The final theorem is alnwet,. but not quite; the convearse of
the important corollary to theorem 8, which states that any linear
utility funstion of a decomposable linear structure is a sensation
scale, To get a converse one has to suppose that P is strictly
mgsonic and that the core is continuous,

Theorem 15, Let P be a decomposable linear structure with a continuous

core, If P has a sensation scale u such that P is strictly monotonie

increasing in that scale, then u is a linear utility function

Proof, First, we show that P is Archimedean. Suppose & > b > ¢, then

by defimition, P(a,c) > P(bse) > P(e,c), but by the strict monotonicity

of P in u these must be strict inequalities. Since P is decomposable,
it is either transitive or additive., If it is transitive, then for
any «¢[0,1], P(a«e,0) = P(a,c)Q(<). By sssumption, Q is continwous;

o
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so by theorem 7 ite range is [0,1], hence P(ass,c) ranges continuously
from 0 = P(c,0) to _P(a,b). Therefore, there exists an «2(0,1) such
that P(w;c) e P(b,c)s A similar, but slightly more complicated
argument establishes the same concluaion for the additive case, m
the fact that u is a sensation scale, P[u(w Yeu(e)] = Plu(b)wlc)],
8o by the strict montonicity of P, u(axc) - u(c) = u(b) - u(e).
Thus bma;(co

Since P is Archimedean and Q is comtinuous, theorem 1l
establishes that there is a linear utility function u'c. Select some
aiteS and let u and u’ be those linear transformations such that
u(a#) « u'(a#) = 0, Since u and u® are each utility functions, there
uaommmyincreuingﬁmctioptsuchthatuwf(u')o By an
argument similar to that used above, the contimuity of Q implies the
continuity of £, Bytpemo]lmtothemB, u' aswell as u is a
gsensation scaie. Thus, if we consider aeS and real § such that
uf(a) + Gis_thﬁmdastheimgeofanelmbbes, then

P( ) = Plu'(a)}+5,ui(a)] = P(8),
so by daﬁnitslon of £,

P(bya) = P {flut(aksl,elu @)} = P felut(aes]-tlu ()R .
Bythamotonicityorl’inu these equations imply there is a functlon
g such that, Y

4 ~ flu*(a)+8] = £[uf(a)] + g(8)o
let a = a%, then u(a®) = 0 = £[u'(an)] = £(0), so £(8) = g(8).
Thus, £(u! + 8) = £(u?) = £(8) for all u' and § such that they and
u' + & are imeges of points of S under ui Since u! is linear, there are a
continum: of such values, This,with the contimity of £, implies
£(x) = kx, Henoe, u is linear.
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aE weblvar, flase we wisl ecadler oue oorberbion 90 Lae o uriidse

wreblont whish oo wiges vp %0 & Jirecy Sranioenotdon;. dhe proble.
amoricg S0 geleeting a gmorrd m,’u. in fwmes of ubich Lo spasnpe
vk ghaoinbe wbliiltyy ave Leporbant,

eARAhye  Bingd obllity dilfersmess,

she maey of 4the seals ds of vo mailer.

Once vho uwhility notion i3 card in 3 dizerimiradion framework.

and i%s nlose relation 1o the poyehopbyeical coaseph of £ just ncbice
atle difererce (Jnd) ie noted, one ir 2nd imuedicbely 0 consider the
Jod a1 a posgiblz mait. For emmle. in a2 condaxh of the social welw-
fare Junutlion problaa end under cextoin very speeial sgmrptions,
Goodman and Markowitz [ 2 ] employed this idea. In genoyal. ubility
theowryr. Tho idea certainly males n¢ sence ab &)l wmiil 3t 1s knosn
wheb o Xnczr wbility funeticn is 2 scnsetisn seale, so that the jnd
i3 conaingfy 1is we bave showa for éocomposatble linesr structures in
theoren 0;

Trare are hwo fNrther agpecte of this ldos which must be
considered befors it can ba considsred a sensible rescirtion of the
interpurgonal comparison prroblem,

within the fyramework we hare glven -- is the question whether the

Ons «- & purely technical matier

comparison effocted by the jnd wnit ia independent of the probability
cut~of'f (soe moction 3) umed to define the semiordsr freom which the

ind fimction rises. This we shall examine below.
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Agmm:l.ng that the technical quastion can be resolved
favarably, the second question is whether equating jnds between people
does in fact solve the interpersonal comparison problem, Certainly,
many people with whom I have spoken ars unconvinced that it does solve
its at the very least; they feel there i3 not ncw any convincling
argument, With this T agree; but intuitively I feel that equating
jnds is roughly what one means by sueh a comparison. A person

considers how sensitive he is to a change, which he measures sub- f %
Jectively in terms of the number of his just dizcernable units, and he
cormpares this with how sensitive anocther person is to the change in
terms of that person’s jnd, It seems %o me that when one makes such
comparisons one is invariably invoking a comparizson of sensitivity,
and I would argue that "sensitivity® means that whigh ig "just dis-
criminated.® One moasure of this is the jnd. Thus, equating jnds

is suggested as the solution to the interperscnal comparison problem,
provided that t_he tochnical problem mentioned j.f.'oro_ can be resolved,
As we shall see;, this leads to an empirical question, the angwer to
which is not now lkmown. Whether defining jrd units to be equal does
capture the idea of interpersonal comparison scams at present to be a
difficull empirical problem,

Nows to the technical question, Suppose that an arbitrary
probability eutoff k, 5 < k < 1, is selected, and suppose that we have
a decomposable lincar structure P with a continuous core Q and a
Hinear utility function u, We wish to find an expression for the jnd
functions of u corresponding to the induced semiorder (definition 5).
These are constant except at the bounds of the utility function.
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Let a#,b¥#s8 be the elsments described in axiom D3, and suppogse a¥ > b¥,
We my take the linsar transformation of the utility fumtion so that
u(a#) = 1 and u(b#) = 0, By the remarks following theorem L of [ } ]
nknwthatthojndtmptionacanbemndu
8 = X(ax,bx;
» supl«] (s )Ibx]
By definition § and the fact that P is regular (theorem 6), (awd®)Ib#
if and only if
k > P(attibit,b) |
= P(a#, bk Q(«) + P(b¥at R().
In the additive case, this reduces to '
k23 {x + [Panbr)r(on,nc),
and in the transitive case to
k > Pas,bu)’®
Solving, 1/e

poss

6w | —2K 5 it P is additive,
|_P(ai,bit JoP(bitsast)

and /e

6o j 1
P(at,b)

Now, suppose that we have two different people, who under the
sane conditions express preferences between alternatives of the same
risk space. Suppose that each person yields a decomposadbls linsar
structure having a linsar utility function and a continuous cores
mmrlmrz.smmmwdmmm,
we my suppose that both s tructures are additive or both are trensitive.

s 1f P is transitive
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Famhmm,thomwommwmrkuuod,mn;adbi
my differ, While a priori, the values of X may also differ, in
practice foroed answers probably would be used in which case X = 1,
This we will assume, Then the ratic of the jnds is given by

1

(e ompoman) 2 L
2?2 22 (Z1)*1 %2 , if P 1s additive

(3
[P(l‘iab;’)‘l’(b;”s‘;)] 1

61
2

i

oMy
Tyt - -
- “"‘5’ ) (k)1 ©2 ., 1f P 18 trensitive.

he

[r(c;,b;_)]

Thns, we sec that the above definition for resolving inter-
persomal comparisons makes no sense at all wnless elnca,fordw
1tdapandsuponthepmterk,wh1¢hiamarﬁhc§ufonrcﬁnnh-
tions, Assuming the decomgposition asswption is met, it is an empiriecal
question whether the parsmeter ¢ is (approximately) constant over the
population, Itao,thiamuldbemmwintmatmgrenlt
regardiess of the interpersomal comparison problem. Note, the
constanscy of s would not imply that all pecple have identical discrimina~
tion functions over evemts in the world, but it would msan this over
subjective probabilities (see section 7).
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